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Electromagnetic and Semiconductor Device
Simulation Using Interpolating Wavelets
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Abstract—A MESFET and a two-dimensional cavity enclosing extended finite-difference time-domain (FDTD) method [2]
acylinder are simulated using a nonuniform mesh generated by an that can deal with an equivalent circuit of the active device has
interpolating wavelet scheme. A self-adaptive mesh is implemented been used to predict nonlinear phenomena and electromagnetic

and controlled by the wavelet coefficient threshold. A fine mesh . . . .
can therefore be used in domains where the unknown quantities compatibility (EMC) effects [3]. A hybrid technique using

are varying rapidly and a coarse mesh can be used where the un- the frequency-domain finite-element method and a circuit
knowns are varying slowly. It is shown that good accuracy can be simulator has also demonstrated good capability to predict
achieved while compressing the number of unknowns by 50% to the behavior of different transistor topology using the same
80% during the whole simulation. In the case of the MESFET, the process [4]. Those techniques, however, cannot simulate the
I-V characteristics are obtained and the accuracy is compared S ST ’ . .
with the basic finite difference scheme. A reduction of 83% in the propagat_lon effects occu_rrl_ng |nS|de_the tranS|stor_at very high
number of discretization points at steady state is obtained with frequencies. Therefore, it is our belief that there is an urgent
3% error on the drain current. The performance of the scheme need to present a new approach to the computational problem
is investigated using different values of threshold and two types of of global modeling to make this technique practical for circuit
interpolating wavelet, namely, the second-order and fourth-order design at millimeter waves.

wavelets. Due to the specific problem analyzed here, a tradeoff . .
appears between good compression, accuracy, and order of the On one hand, one can decide to l_Jse the FD_TD technique
wavelet. This represents the ongoing effort toward a numerical 0 solve for the EM fields of the passive and active parts, but
technique that uses wavelets to solve both Maxwell’'s equations and soon will face a difficult problem. The cell size of passive parts
the semiconductor equations. Such a method is of great interest to will be almost as big as the whole transistor. Therefore, com-
deal with the multiscale problem that s the full-wave simulation of -, tationally expensive techniques like time-domain diakoptics
an active microwave circuits. . .
must be employed [1], [5]. On the other hand, implementing
_Index Terms—Adaptive gridding, global modeling, microwave g technique that adaptively refines the mesh in domains where
circuits, multiresolution, thresholding, time-domain method, the unknown quantities vary rapidly would considerably reduce
wavelets. .
the number of unknowns. Such a technique corresponds to a
multiresolution analysis of the problem. A very attractive way
|. INTRODUCTION of implementing a multiresolution analysis is to use wavelets
ITH THE increasing flow of data in the telecommuni-[6]' Wa\_/ele_ts have been used in electromagnetlcs_ for a few
cation world, the performances of high-frequency d /ears, first in the method of mo.men.ts [7] and later in FDTD.
vices have become more demanding. Typical circuit simulat Swasddemonf:]ratedtLS]dth?t f|n|te-dt|ffer$rr110e sc?etmes can be
no longer represent the accurate tool to characterize microw t;\vef. ﬂj‘”?rh € me It'o ° morr_1en| ts er] .Wavﬁ N Expan&ﬁnz
circuits. Electromagnetic (EM) simulators need to be usedﬁ" € 'E, S: | tt.ares%u mg numerltcahep mqllj\/?R'I?S %en_lc_:ﬁ €
tackle the problems of EM interference such as packaging € muiiresoiution ime-domain technique ( ) [9]. This
method has been studied extensively [10] and shows very good

fects and coupling between subcircuits among others. .
The full-wave analysis of microwave circuits (global modperformance as for the accuracy, memory requirements, and

eling) is a tremendous task that requires involved numeric%FU time. Nevertheless, the implementation of wavelets to

techniques and algorithms. In [1], the authors self-consistenfi miconductor eqqatlons IS St'”. to be [nvestlgateg thoroughly
order to determine if a multiresolution numerical method

solve Maxwell's equations together with the semiconduct ) .
equations that characterize a submicrometer gate devicd" be used in the context of global modeling. The MRTD can

Alternative techniques have shown interesting results. TRS regarded asawavelet-.based Galerkin mgthod. For_ nonlme_a '
equations such as semiconductor modeling equations, this

method can become quite time consuming [11]. Therefore, in
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Fig. 3. Left boundary scaling function fer= 4.
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Fig. 2. Scaling function for: (g = 2 and (b)p = 4.

Fig. 4. Wavelet subspaces representation.

quickly. We will follow the algorithm explained in [12] that hast.he scglmg fun(;t|on for two d|ffergnt. type of _mterpolatlon,
linear interpolationp = 2 and cubic interpolationp = 4.

_been used to solve _one-dl_men5|onal (1'D.) Maxwe!lsequano?ﬁis scaling function is defined on the real line so special
in [13] and a two-dimensional (2-D) p-n junction in [14]. We . . .
will use this scheme to solve a 2-D cavity (TE case) enclosir?ttentlon should be given to the boundaries. In the case of

: . ) o cavity { . iRear interpolation, the scheme remains the same, but for other
a cylinder representing a discontinuity inside the cavity. Thlsolynomials 6 — 4), the standard stencil must be modified
cylinder will allow us to see the refinement process that OCCLES ’ '

. ) . . . . ig. 3 shows the left boundary scaling functions for level 3
during the simulation. We will also present the simulation Ov]:/hen _ 4 Interestinalv enouah. this scaling functionis
a typical MESFET. p= % gy enougn, 9 on

the autocorrelation function of the Daubechies wavelet [17].

This paper is organized as follows. Section Il gives algoragiven ordep, o(z) = [ G(y)@(y — =) dy whereg is the

introduction to the interpolating wavelet and the numerical__,. : . ; :

S . : aling function associated with Daubechies waveletg/af
scheme used to solve the partial differential equations (PDE\%;nishin moments. It was shown in [18] that the expansion of
Section Il presents a brief review of the MESFET physic% g X b

: . : e solution of an elliptic PDE in terms of interpolating scaling
models in the context of global modeling. Numerical expef- ~ ~. . .
. ' e T unction leads to the same linear system than the one obtained
iments done on a 2-D cavity and a drift-diffusion model ar

y using Daubechies wavelets as test and trial function in a

related in Section IV together with the investigation of th(Esalerkin method. From construction, this scaling function has

numerical scheme performance. Finally, conclusions are dra\évnCompact supportdp + 1, p — 1] and verifies the dilation

in Section V. . L
equation specific to wavelets
[I. INTERPOLATING WAVELET SCHEME k=p-—1
The wavelet scheme is based on the interpolating subdivision wlz) = Z grp(2 — k).

scheme studied by Deslauriers and Dubuc [15]. It was later ex- b=mrl

tended in an interpolated wavelet transform by Donoho [16This scaling function is used to refine the mesh, in other terms
The idea is to consider a set of dyadic grids that defines diftove from subspac¥®); to subspacé’; ;. We can introduce
ferent resolution levels. A grid contains all points of the coarssubspacél’; to define the difference betwedri and V.
level plus points inserted halfway between those. Values at otldese new subspaces can be represented as shown in Fig. 4.
grid points are kept unchanged while values at even points aréd possible choice of functions that span the subspaces
interpolated by a polynomial. The set of dyadic grids can be ref%; is the set of scaling functions itself. Therefore, it defines
resented as shown in Fig. 1. a nonorthogonal multiresolution. In this representation, the
If we start on the coarser grid with the Kronecker deltavavelet coefficients are the error between the value at odd grid
function and interpolate the values at even grid points, we bujaints and the interpolated value at a coarser grid. With this
the scaling function. According to the order of the interpolatingavelet representation, one can refine or coarsen the mesh as
polynomial, the scaling function built is different. Fig. 2 showslesired.
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Now we can create the so-called sparse point representatiioms provide a time-dependent solution for carrier density, en-
of afunctionyf [12]. Starting with the coarsest grid, we create aargy, and momentum. They are given as follows.
irregular mesh by computing the error between the exact value « Current continuity
of f on the coarse grid and the value obtained by interpolation.
The wavelet coefficients carry the detailed signal: the error be- In + V- (nv) =0.
tween the exact value and the interpolated value. By removing ot
the points that can be interpolated, we greatly compress the datee Energy conservation
defining a sparse point representation (SPR) that can be used for,

computation. The number of points remaining in the SPR de- d(ne) + V.(nve) = qgnu.E — V.(nkTv) — M_
pends on the smoothness of the function. If the function varies t Te
smoothly, it will be easily described by a polynomial interpola- « Momentum conservation

tion and thus the SPR will contain very few points. If the func- (npx) o~
tion varies rapidly, then the SPR will contain more points as the ot + V.(npev) = gnby — V(nkT) — —

interpolation will be insufficient to coarsen the mesh. The com-
pression that one can obtain depends on the threshold valueng®trer is the electron concentrationthe electron velocityF
as the minimum error for the interpolation procedure. the electric field, ang the momentum. In the energy conser-
This extremely versatile technique is expected to be vewgtion equationg represents the electron energy agds the
useful to solve PDEs, especially nonlinear ones. Multiplicaticgquilibrium thermal energy (in all sections of the papeefers
and derivatives can be computed in this SPR, which m#y the wavelet coefficient threshold or the dielectric constant).
considerably reduce the computation time. The typical way ®he time and spatial dependencies are not neglected to appropri-
solving a PDE using the SPR representation is to transform tiely model submicrometer gate devices RF and transient condi-
PDE into a system of ordinary differential equations (ODEgjons. In the early stage of this work, we need to demonstrate that
using the method of lines. The initial conditions are set and thige interpolating wavelet scheme can be used to solve semicon-
first SPR is obtained, the spatial derivatives are approximateédctor equations and that it will bring versatility and efficiency
using the interpolated wavelet scheme [12], and the némthe numericaltechnique used for global modeling. As aresult,
time iteration is performed using an ODE solver. The type @fsimplifying assumption is made in this paper and the drift dif-
PDE that is to be solved may introduce some changes in flusion model is considered to obtain the behavior of the active
algorithm, as the SPR may not need to be computed at eagvice. Ultimately, a full hydrodynamic model should be im-
time step. The ODE solver also offers a great degree of freedplemented with Maxwell’s equations to obtain a self-consistent
as one can choose between standard Runge—Kutta metheusulation of the propagation effects in sub-micrometer gate de-
multistep methods, and so on. In general, the more expensiees. The equations to be solved in the drift-diffusion model for
the ODE solver, the more efficient this scheme will be as treeunipolar device are
overhead created by the SPR manipulation will be overcome « poisson’s equations
by the spatial derivatives approximations. In summary, the

algorithm to solve a differential equation using this scheme is vy =1 (N —n),
as follows: o _ €
« set initial conditions; * continuity equation
« obtain the SPR of the unknowns; on
 approximate spatial derivative using SPR interpolation; 9t Vo dn,

 advance in time using ODE solver;
* go back to the SPR computation.
A similar scheme has been employed to solve the problem of a Jo=tpin-n-E+D,-Vn
2-D p-njunction [14]. However, in this previous work, the elec- ) ) ] )
tron and hole mobilities were assumed constant. This assuriiere/V is the doping profiley, the electron density, and, and
tion severely limits the validity of the technique for simulating’» are the mobility and the diffusion coefficient, respectively.
modern semiconductor devices used for high-speed or high-ffi it was said before, in a previous work [14] they were assumed
quency applications. Therefore, in this paper, we propose to tr&hpe constants. In this yvork, they are functions of the electric
the problem of a field-effect transistor with mobility and diffu-fiéld. The mobility is defined by an empirical formula

sion coefficient as functions of the electric field. o E11/2)
N(E):Quo{l-i-[l-i- o } }

with

oo

I1l. MESFET PHYSICAL MODEL

In the context of global modeling, the active devices simi¥here uo is the zero-field mobility and.. is the saturation
lated are submicrometer gate devices that exhibit the hot eluglocity. The diffusion term is also a function of the electric field
tron phenomena with a 2-D distribution of the energy [19]. Th@an_ks to the mobility. The diffusivity is defined by the Einstein
physical model used is called the full hydrodynamic model artglation
is based on the moments of the Boltzmann’s transport equations kT

obtained by integration over the momentum space. These equa- D= q H
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where T is the temperature ank the Boltzmann's constant. s ” v ‘“"4’0 5 o =2
Poisson’s equations can be discretized by finite-difference ®)

schemes. This results in a linear system that can be solved by
any iterative solver provided that the matrix representation B 6. SPR of they component of the electric field at: ()= 520 ps and
the discretized operator satisfies the stability and convergeﬁ@et = 840 ps.

criteria such as positive definite matrix. As the Poisson’s

equations is to be replaced in a future work by the Maxwell's ** ’ ' ' ' !
equations, no significant efforts were put to gain computationa s | > %30 |- “w f +fg#%
time while solving this equation. All the effort was concentrated | | » % PN P ¥qTo |
on the continuity equation that exhibit nonlinearity. However, as K, %& & o3 & 59%
mentioned in the previous section, a discretization of Poisson’ o *r L % s E9 §¥§§ '
equation using Daubechies wavelets leads to the same syste §1zoo-- ............ & lg.0. ?@ B Ny
as the one obtained by interpolating scaling functions [18]. The € } fo 8 °

continuity equation is solved using the interpolating schemes ™| o o%’ PR
presented in the previous section. Time-domain simulationzé s00f- FE &-Ig-' ST ﬁ'?‘g ”
are performed. One can verify that the gate current is zero &2 soof Y, *og S %g}&"‘*ﬁkf 3;-» e o
effectively no current must flow through the Schottky contact. P ﬂ%ﬁ ° ii‘ *;{

A relative error is defined in order to compare the standarc  “°] g‘ﬁfg o ;’%Jf’* 0%, 2 ]
finite-difference method that uses a uniform mesh and the 2ol %Mw; ;u? e .
interpolating wavelet scheme that generates the nonuniforr OM , : ‘

0 50 150 300

Time iterations

200 250

mesh. This relative error is defined on the drain current as

||J: — Jepl|
|Jen |

Fig. 7. Number of unknowns remaining in the SPR for three different values
of wavelet threshold.

Crelative —

0- . . . . :
inside the cavity are developing and scattering due to cylinder

Ois occurring.

Fig. 6 shows the SPR or, in other terms, the nonuniform mesh
generated by the scheme at the same time as in Fig. 5. This
demonstrates the self-adaptibility of the mesh which gets finer
in regions where the fields are varying rapidly. At= 840 ps,

Initial results of MESFET simulation were introduced in [20]scattering due to the cylinder needs to be modeled accurately;
A 2-D cavity is now simulated according to the example preéherefore, more points are used around the cylinder. At every
sented in [21]. The cavity is discretized by a mesl6édf 33 time step, this nonuniform mesh is generated by the wavelet
with a space incrementr = 3.0 mm. The time increment is scheme. Thus, the number of unknowns varies in time. Fig. 7
dt = 5.0 ps. Fig. 5 shows thg component of the electric field shows this behavior. Three wavelet thresholds are used. We can
at two different time. We can see thattatE 520 ps the wave see that, as the threshold gets smaller, more points need to be
did not reach the cylinder yet, whereag at 840 ps the modes used in the mesh. The error computed during the interpolation

where J. is the drain current density computed by the interp
lating wavelet scheme using a threshold:@n the SPR of the
carrier density and’rp is the drain current density compute
by a standard finite-difference code.

IV. RESULTS
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Fig. 8. Relative error of the electric field versus time for three waveldfld- 10 |-V characteristics of the simulated MESFET.
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Fig. 9. 2-D conventional structure of the simulated MESFET. i

ad

needs to be smaller, thus finer mesh are used. These results w *¥| |
compared with the FDTD results from [21]. Fig. 8 shows the rel- |
ative error on the electric field versus time. A random point wa:
chosen within the structure to record the values of the electri®'| i 1
field, then the relative error was computed every six time step: , i - P

The adaptability of the mesh makes the error extremely depel po O P A =M S -

dent on time. However, it can be seen that the error is reduced

as the wavelet threshold is minimized. This is an expected l#ég. 11. Contour plot of the electrostatic potential for a drain voltage of 2 V
havior due to the fact that, when the threshold is minimized, tRB9 " applied external gate voltage-af V.

grid is refined and looks more like the finite-difference grid used

¥l

in [21]. ' T T -
Then, a MESFET with the following dimensions is sim- u&b’
ulated: 0.6am gate length, ksm-long source and drain s
electrodes, 0.7#m source—gate gap, 1/n gate—drain sepa- “* i F—— LU — Tl

ration, 0.2um-deep channel layer, and a Q:8-deep buffer
layer. Fig. 9 presents the conventional 2-D structure used fc
simulations. The doping of the active layer is 12 10'7 i
A/cm? and the doping of the buffer layer isx 10* cm~2. .8 |
The zero-field mobility is 800 cAiV-s and the saturation

velocity v, is 10" cm/s. A 65+ 65 mesh was used for spatial nd}
discretization while the Euler's method was used as the ODI |

solver. The time step was chosen to be 8%0s, but due

to the nonuniform meshes used some tuning was require **|

to ensure stability. Fig. 10 shows tHeV' characteristics of gl

the simulated MESFET. A typical behavior is observed. The

electrostatic potential contour plot is shown in Fig. 11 for a »  as ] 14 r 24 T i a5
drain voltage of 2 V and a gate voltage-el V. In Fig. 12, the i
carrier distribution is plotted and the corresponding SPR can HS 12. Contour plot of the carrier density (the labels are normalizad b¥)
compared in Fig. 13 for the same bias condition as the potential2-v drain voltage and-1-V applied gate voltage.
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were chosere = 0.01, ¢ = 0.001, ande = 0.0001. The rela-
Fig.13. SPR of the carrier density at 2-V drain voltage aridV applied gate tive threshold was defined asiV,;, whereN, is the doping of
voltage. the channel layer. A set of simulations was performed for these
three threshold values and for two cases of scaling functions
p = 2 andp = 4. Fig. 15 represents the number of mesh points
remaining in the SPR after thresholding of the wavelet coeffi-
cients. Different conclusions can be drawn from this numerical
experiment. As the threshold gets smaller, the error that is tol-
erated in the representation of the carrier density gets smaller,
and more points are necessary to accurately represent the carrier
density. At the beginning of the simulation, the carrier density is
initialized to the doping profile, thus very few points are needed
due to the smoothness of this initial condition. As time evolves,
the depletion region starts to appear and points are added in the
SPR, which is why, for the first 400 iterations, the number of
unknowns grows. When the depletion region is created and the
MESFET starts to reach its steady state, the carrier concentra-
tion stops changing and the number of points in the SPR remains

200

Currents ( mA / mm})

1 1 | ' 1
0 200 400 600 800 1000 1200 1400 1600 the same
Time Iterations (dt = 8.107"%)

1 '

These above remarks illustrate the dynamic behavior of the
Fig. 14. Time-domain drain, source, and gate currents at 2-V drain voltage di@sh. More involved is the behavior of the SPR for= 2
—1-V applied gate voltage. andp = 4. Fig. 15 demonstrates that, fer= 0.01 ande =
0.001, the linear interpolation achieves a better compression
shown in Fig. 11. We observe that the depletion region waatio than the cubic interpolation. Fer = 0.0001, however,
created in the channel. The SPR kept mesh points in the gitits the opposite. When the carrier density is almost constant,
where the carrier density varies rapidly, namely, around tliee linear interpolation performs better. Only two points can be
depletion region and along the junction between the channmsled to describe the correct solution: the coarser mesh of the
and the buffer layer. In smooth regions, where the interpolatitinear interpolation requires fewer points than the cubic inter-
is more accurate, fewer points are needed. Thus, few poiptdation. In the depletion region where the carrier density varies
are necessary to predict the carrier density deep in the buffapidly, a significant error is acceptable. So, the linear interpola-
layer. This representation changes in time, which makes tten still uses less unknowns than the cubic ones At 0.0001,
grid dynamically adaptive. it appears that the breaking point has been reached, and the
The performance of the new scheme is investigated at a sinfijear interpolation can no longer describe the depletion region
bias point: 2-V drain voltage and1-V applied gate voltage. with the required accuracy without using the finest mesh. It is
Fig. 14 shows the drain, source, and gate currents computed understanding that this breaking point is a function of the
at each time step. A conventional behavior is obtained as thvavelet threshold, the bias point, and the physical dimensions.
source and drain currents converge to the same value andThe buffer layer can be made smaller, which would result in
gate current tends to zero. Three absolute wavelet threshadddepletion region occupying more space in the computational
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10 ; ! . g T ; ; in CPU time is a function of the ODE solver. The overhead

' ‘ ' ’ : created by generating the nonuniform mesh can be reduced by
an appropriate data structure and can be negligible compared
to the number of times the SPRs are used in the ODE solver.
This opens the door to an efficient numerical technigue suitable
for global modeling of microwave circuits. This scheme will
be applied to more complex semiconductor models in the near
future to model the particle-wave interaction that occurs inside
high-frequency and high-speed active devices.

Relative Error on the Drain Current
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