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Abstract—A MESFET and a two-dimensional cavity enclosing
a cylinder are simulated using a nonuniform mesh generated by an
interpolating wavelet scheme. A self-adaptive mesh is implemented
and controlled by the wavelet coefficient threshold. A fine mesh
can therefore be used in domains where the unknown quantities
are varying rapidly and a coarse mesh can be used where the un-
knowns are varying slowly. It is shown that good accuracy can be
achieved while compressing the number of unknowns by 50% to
80% during the whole simulation. In the case of the MESFET, the

– characteristics are obtained and the accuracy is compared
with the basic finite difference scheme. A reduction of 83% in the
number of discretization points at steady state is obtained with
3% error on the drain current. The performance of the scheme
is investigated using different values of threshold and two types of
interpolating wavelet, namely, the second-order and fourth-order
wavelets. Due to the specific problem analyzed here, a tradeoff
appears between good compression, accuracy, and order of the
wavelet. This represents the ongoing effort toward a numerical
technique that uses wavelets to solve both Maxwell’s equations and
the semiconductor equations. Such a method is of great interest to
deal with the multiscale problem that is the full-wave simulation of
an active microwave circuits.

Index Terms—Adaptive gridding, global modeling, microwave
circuits, multiresolution, thresholding, time-domain method,
wavelets.

I. INTRODUCTION

W ITH THE increasing flow of data in the telecommuni-
cation world, the performances of high-frequency de-

vices have become more demanding. Typical circuit simulators
no longer represent the accurate tool to characterize microwave
circuits. Electromagnetic (EM) simulators need to be used to
tackle the problems of EM interference such as packaging ef-
fects and coupling between subcircuits among others.

The full-wave analysis of microwave circuits (global mod-
eling) is a tremendous task that requires involved numerical
techniques and algorithms. In [1], the authors self-consistently
solve Maxwell’s equations together with the semiconductor
equations that characterize a submicrometer gate device.
Alternative techniques have shown interesting results. The
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extended finite-difference time-domain (FDTD) method [2]
that can deal with an equivalent circuit of the active device has
been used to predict nonlinear phenomena and electromagnetic
compatibility (EMC) effects [3]. A hybrid technique using
the frequency-domain finite-element method and a circuit
simulator has also demonstrated good capability to predict
the behavior of different transistor topology using the same
process [4]. Those techniques, however, cannot simulate the
propagation effects occurring inside the transistor at very high
frequencies. Therefore, it is our belief that there is an urgent
need to present a new approach to the computational problem
of global modeling to make this technique practical for circuit
design at millimeter waves.

On one hand, one can decide to use the FDTD technique
to solve for the EM fields of the passive and active parts, but
soon will face a difficult problem. The cell size of passive parts
will be almost as big as the whole transistor. Therefore, com-
putationally expensive techniques like time-domain diakoptics
must be employed [1], [5]. On the other hand, implementing
a technique that adaptively refines the mesh in domains where
the unknown quantities vary rapidly would considerably reduce
the number of unknowns. Such a technique corresponds to a
multiresolution analysis of the problem. A very attractive way
of implementing a multiresolution analysis is to use wavelets
[6]. Wavelets have been used in electromagnetics for a few
years, first in the method of moments [7] and later in FDTD.
It was demonstrated [8] that finite-difference schemes can be
derived using the method of moments with wavelet expansions
of the fields. The resulting numerical technique has been called
the multiresolution time-domain technique (MRTD) [9]. This
method has been studied extensively [10] and shows very good
performance as for the accuracy, memory requirements, and
CPU time. Nevertheless, the implementation of wavelets to
semiconductor equations is still to be investigated thoroughly
in order to determine if a multiresolution numerical method
can be used in the context of global modeling. The MRTD can
be regarded as a wavelet-based Galerkin method. For nonlinear
equations such as semiconductor modeling equations, this
method can become quite time consuming [11]. Therefore, in
this paper, a different wavelet approach is investigated, bearing
in mind the possible hybridization of different multiresolution
techniques in the future. We propose to apply a wavelet interpo-
lating scheme to the semiconductor equations and Maxwell’s
equations. The equations are solved on a dyadic grid. The
wavelet coefficients are directly related to the physical domain
as they represent the error between the exact solution on the
grid and the interpolated value from the previous coarser
mesh. This scheme allows us to multiply and differentiate very
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Fig. 1. Three dyadic grids.

(a)

(b)

Fig. 2. Scaling function for: (a)p = 2 and (b)p = 4.

quickly. We will follow the algorithm explained in [12] that has
been used to solve one-dimensional (1-D) Maxwell’s equations
in [13] and a two-dimensional (2-D) p-n junction in [14]. We
will use this scheme to solve a 2-D cavity (TE case) enclosing
a cylinder representing a discontinuity inside the cavity. This
cylinder will allow us to see the refinement process that occurs
during the simulation. We will also present the simulation of
a typical MESFET.

This paper is organized as follows. Section II gives an
introduction to the interpolating wavelet and the numerical
scheme used to solve the partial differential equations (PDEs).
Section III presents a brief review of the MESFET physical
models in the context of global modeling. Numerical exper-
iments done on a 2-D cavity and a drift-diffusion model are
related in Section IV together with the investigation of the
numerical scheme performance. Finally, conclusions are drawn
in Section V.

II. I NTERPOLATING WAVELET SCHEME

The wavelet scheme is based on the interpolating subdivision
scheme studied by Deslauriers and Dubuc [15]. It was later ex-
tended in an interpolated wavelet transform by Donoho [16].
The idea is to consider a set of dyadic grids that defines dif-
ferent resolution levels. A grid contains all points of the coarser
level plus points inserted halfway between those. Values at odd
grid points are kept unchanged while values at even points are
interpolated by a polynomial. The set of dyadic grids can be rep-
resented as shown in Fig. 1.

If we start on the coarser grid with the Kronecker delta
function and interpolate the values at even grid points, we build
the scaling function. According to the order of the interpolating
polynomial, the scaling function built is different. Fig. 2 shows

Fig. 3. Left boundary scaling function forp = 4.

Fig. 4. Wavelet subspaces representation.

the scaling function for two different type of interpolation,
linear interpolation and cubic interpolation .
This scaling function is defined on the real line so special
attention should be given to the boundaries. In the case of
linear interpolation, the scheme remains the same, but for other
polynomials ( ), the standard stencil must be modified.
Fig. 3 shows the left boundary scaling functions for level 3
when . Interestingly enough, this scaling functionis
the autocorrelation function of the Daubechies wavelet [17].
For a given order , where is the
scaling function associated with Daubechies wavelets of
vanishing moments. It was shown in [18] that the expansion of
the solution of an elliptic PDE in terms of interpolating scaling
function leads to the same linear system than the one obtained
by using Daubechies wavelets as test and trial function in a
Galerkin method. From construction, this scaling function has
a compact support [ ] and verifies the dilation
equation specific to wavelets

This scaling function is used to refine the mesh, in other terms
move from subspace to subspace . We can introduce
subspace to define the difference between and .
These new subspaces can be represented as shown in Fig. 4.

A possible choice of functions that span the subspaces
is the set of scaling functions itself. Therefore, it defines

a nonorthogonal multiresolution. In this representation, the
wavelet coefficients are the error between the value at odd grid
points and the interpolated value at a coarser grid. With this
wavelet representation, one can refine or coarsen the mesh as
desired.
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Now we can create the so-called sparse point representation
of a function [12]. Starting with the coarsest grid, we create an
irregular mesh by computing the error between the exact value
of on the coarse grid and the value obtained by interpolation.
The wavelet coefficients carry the detailed signal: the error be-
tween the exact value and the interpolated value. By removing
the points that can be interpolated, we greatly compress the data
defining a sparse point representation (SPR) that can be used for
computation. The number of points remaining in the SPR de-
pends on the smoothness of the function. If the function varies
smoothly, it will be easily described by a polynomial interpola-
tion and thus the SPR will contain very few points. If the func-
tion varies rapidly, then the SPR will contain more points as the
interpolation will be insufficient to coarsen the mesh. The com-
pression that one can obtain depends on the threshold value set
as the minimum error for the interpolation procedure.

This extremely versatile technique is expected to be very
useful to solve PDEs, especially nonlinear ones. Multiplication
and derivatives can be computed in this SPR, which may
considerably reduce the computation time. The typical way of
solving a PDE using the SPR representation is to transform the
PDE into a system of ordinary differential equations (ODEs)
using the method of lines. The initial conditions are set and the
first SPR is obtained, the spatial derivatives are approximated
using the interpolated wavelet scheme [12], and the new
time iteration is performed using an ODE solver. The type of
PDE that is to be solved may introduce some changes in the
algorithm, as the SPR may not need to be computed at each
time step. The ODE solver also offers a great degree of freedom
as one can choose between standard Runge–Kutta methods,
multistep methods, and so on. In general, the more expensive
the ODE solver, the more efficient this scheme will be as the
overhead created by the SPR manipulation will be overcome
by the spatial derivatives approximations. In summary, the
algorithm to solve a differential equation using this scheme is
as follows:

• set initial conditions;
• obtain the SPR of the unknowns;
• approximate spatial derivative using SPR interpolation;
• advance in time using ODE solver;
• go back to the SPR computation.

A similar scheme has been employed to solve the problem of a
2-D p-n junction [14]. However, in this previous work, the elec-
tron and hole mobilities were assumed constant. This assump-
tion severely limits the validity of the technique for simulating
modern semiconductor devices used for high-speed or high-fre-
quency applications. Therefore, in this paper, we propose to treat
the problem of a field-effect transistor with mobility and diffu-
sion coefficient as functions of the electric field.

III. MESFET PHYSICAL MODEL

In the context of global modeling, the active devices simu-
lated are submicrometer gate devices that exhibit the hot elec-
tron phenomena with a 2-D distribution of the energy [19]. The
physical model used is called the full hydrodynamic model and
is based on the moments of the Boltzmann’s transport equations
obtained by integration over the momentum space. These equa-

tions provide a time-dependent solution for carrier density, en-
ergy, and momentum. They are given as follows.

• Current continuity

• Energy conservation

• Momentum conservation

where is the electron concentration,the electron velocity,
the electric field, and the momentum. In the energy conser-
vation equation, represents the electron energy andis the
equilibrium thermal energy (in all sections of the paper,refers
to the wavelet coefficient threshold or the dielectric constant).
The time and spatial dependencies are not neglected to appropri-
ately model submicrometer gate devices RF and transient condi-
tions. In the early stage of this work, we need to demonstrate that
the interpolating wavelet scheme can be used to solve semicon-
ductor equations and that it will bring versatility and efficiency
in the numerical technique used for global modeling. As a result,
a simplifying assumption is made in this paper and the drift dif-
fusion model is considered to obtain the behavior of the active
device. Ultimately, a full hydrodynamic model should be im-
plemented with Maxwell’s equations to obtain a self-consistent
simulation of the propagation effects in sub-micrometer gate de-
vices. The equations to be solved in the drift-diffusion model for
a unipolar device are

• Poisson’s equations

• continuity equation

with

where is the doping profile, the electron density, and and
are the mobility and the diffusion coefficient, respectively.

As it was said before, in a previous work [14] they were assumed
to be constants. In this work, they are functions of the electric
field. The mobility is defined by an empirical formula

where is the zero-field mobility and is the saturation
velocity. The diffusion term is also a function of the electric field
thanks to the mobility. The diffusivity is defined by the Einstein
relation
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(a)

(b)

Fig. 5. Electric field in they direction. (a)t = 520 ps. (b)t = 840 ps.

where is the temperature and the Boltzmann’s constant.
Poisson’s equations can be discretized by finite-difference
schemes. This results in a linear system that can be solved by
any iterative solver provided that the matrix representation of
the discretized operator satisfies the stability and convergence
criteria such as positive definite matrix. As the Poisson’s
equations is to be replaced in a future work by the Maxwell’s
equations, no significant efforts were put to gain computational
time while solving this equation. All the effort was concentrated
on the continuity equation that exhibit nonlinearity. However, as
mentioned in the previous section, a discretization of Poisson’s
equation using Daubechies wavelets leads to the same system
as the one obtained by interpolating scaling functions [18]. The
continuity equation is solved using the interpolating scheme
presented in the previous section. Time-domain simulations
are performed. One can verify that the gate current is zero as
effectively no current must flow through the Schottky contact.
A relative error is defined in order to compare the standard
finite-difference method that uses a uniform mesh and the
interpolating wavelet scheme that generates the nonuniform
mesh. This relative error is defined on the drain current as

where is the drain current density computed by the interpo-
lating wavelet scheme using a threshold ofon the SPR of the
carrier density and is the drain current density computed
by a standard finite-difference code.

IV. RESULTS

Initial results of MESFET simulation were introduced in [20].
A 2-D cavity is now simulated according to the example pre-
sented in [21]. The cavity is discretized by a mesh of
with a space increment mm. The time increment is

ps. Fig. 5 shows the component of the electric field
at two different time. We can see that at ps the wave
did not reach the cylinder yet, whereas at ps the modes

(a)

(b)

Fig. 6. SPR of they component of the electric field at: (a)t = 520 ps and
(b) t = 840 ps.

Fig. 7. Number of unknowns remaining in the SPR for three different values
of wavelet threshold.

inside the cavity are developing and scattering due to cylinder
is occurring.

Fig. 6 shows the SPR or, in other terms, the nonuniform mesh
generated by the scheme at the same time as in Fig. 5. This
demonstrates the self-adaptibility of the mesh which gets finer
in regions where the fields are varying rapidly. At ps,
scattering due to the cylinder needs to be modeled accurately;
therefore, more points are used around the cylinder. At every
time step, this nonuniform mesh is generated by the wavelet
scheme. Thus, the number of unknowns varies in time. Fig. 7
shows this behavior. Three wavelet thresholds are used. We can
see that, as the threshold gets smaller, more points need to be
used in the mesh. The error computed during the interpolation
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Fig. 8. Relative error of the electric field versus time for three wavelet
threshold values.

Fig. 9. 2-D conventional structure of the simulated MESFET.

needs to be smaller, thus finer mesh are used. These results were
compared with the FDTD results from [21]. Fig. 8 shows the rel-
ative error on the electric field versus time. A random point was
chosen within the structure to record the values of the electric
field, then the relative error was computed every six time steps.
The adaptability of the mesh makes the error extremely depen-
dent on time. However, it can be seen that the error is reduced
as the wavelet threshold is minimized. This is an expected be-
havior due to the fact that, when the threshold is minimized, the
grid is refined and looks more like the finite-difference grid used
in [21].

Then, a MESFET with the following dimensions is sim-
ulated: 0.6- m gate length, 1-m-long source and drain
electrodes, 0.7-m source–gate gap, 1.5-m gate–drain sepa-
ration, 0.2- m-deep channel layer, and a 0.8-m-deep buffer
layer. Fig. 9 presents the conventional 2-D structure used for
simulations. The doping of the active layer is 1.2 10
A/cm and the doping of the buffer layer is 1 10 cm .
The zero-field mobility is 800 cm/V s and the saturation
velocity is 10 cm/s. A 65 65 mesh was used for spatial
discretization while the Euler’s method was used as the ODE
solver. The time step was chosen to be 8.10s, but due
to the nonuniform meshes used some tuning was required
to ensure stability. Fig. 10 shows the– characteristics of
the simulated MESFET. A typical behavior is observed. The
electrostatic potential contour plot is shown in Fig. 11 for a
drain voltage of 2 V and a gate voltage of1 V. In Fig. 12, the
carrier distribution is plotted and the corresponding SPR can be
compared in Fig. 13 for the same bias condition as the potential

Fig. 10. I–V characteristics of the simulated MESFET.

Fig. 11. Contour plot of the electrostatic potential for a drain voltage of 2 V
and an applied external gate voltage of�1 V.

Fig. 12. Contour plot of the carrier density (the labels are normalized by10 )
for 2-V drain voltage and�1-V applied gate voltage.
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Fig. 13. SPR of the carrier density at 2-V drain voltage and�1-V applied gate
voltage.

Fig. 14. Time-domain drain, source, and gate currents at 2-V drain voltage and
�1-V applied gate voltage.

shown in Fig. 11. We observe that the depletion region was
created in the channel. The SPR kept mesh points in the grid
where the carrier density varies rapidly, namely, around the
depletion region and along the junction between the channel
and the buffer layer. In smooth regions, where the interpolation
is more accurate, fewer points are needed. Thus, few points
are necessary to predict the carrier density deep in the buffer
layer. This representation changes in time, which makes the
grid dynamically adaptive.

The performance of the new scheme is investigated at a single
bias point: 2-V drain voltage and1-V applied gate voltage.
Fig. 14 shows the drain, source, and gate currents computed
at each time step. A conventional behavior is obtained as the
source and drain currents converge to the same value and the
gate current tends to zero. Three absolute wavelet thresholds

Fig. 15. Mesh adaptability for three different values of wavelet threshold.
(Solid lines:p = 2; dashed lines:p = 4).

were chosen: , , and . The rela-
tive threshold was defined as , where is the doping of
the channel layer. A set of simulations was performed for these
three threshold values and for two cases of scaling functions

and . Fig. 15 represents the number of mesh points
remaining in the SPR after thresholding of the wavelet coeffi-
cients. Different conclusions can be drawn from this numerical
experiment. As the threshold gets smaller, the error that is tol-
erated in the representation of the carrier density gets smaller,
and more points are necessary to accurately represent the carrier
density. At the beginning of the simulation, the carrier density is
initialized to the doping profile, thus very few points are needed
due to the smoothness of this initial condition. As time evolves,
the depletion region starts to appear and points are added in the
SPR, which is why, for the first 400 iterations, the number of
unknowns grows. When the depletion region is created and the
MESFET starts to reach its steady state, the carrier concentra-
tion stops changing and the number of points in the SPR remains
the same.

These above remarks illustrate the dynamic behavior of the
mesh. More involved is the behavior of the SPR for
and . Fig. 15 demonstrates that, for and

, the linear interpolation achieves a better compression
ratio than the cubic interpolation. For , however,
it is the opposite. When the carrier density is almost constant,
the linear interpolation performs better. Only two points can be
used to describe the correct solution: the coarser mesh of the
linear interpolation requires fewer points than the cubic inter-
polation. In the depletion region where the carrier density varies
rapidly, a significant error is acceptable. So, the linear interpola-
tion still uses less unknowns than the cubic one. At ,
it appears that the breaking point has been reached, and the
linear interpolation can no longer describe the depletion region
with the required accuracy without using the finest mesh. It is
our understanding that this breaking point is a function of the
wavelet threshold, the bias point, and the physical dimensions.
The buffer layer can be made smaller, which would result in
a depletion region occupying more space in the computational
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Fig. 16. Relative error on the drain current for three different values of wavelet
threshold. (Solid lines:p = 2; dashed lines:p = 4).

domain. The cubic interpolation could therefore outperform the
linear one for a much bigger error than is the case in this exper-
iment. Finally, Fig. 16 presents the relative error defined in the
previous section. This graph compares the solution of a stan-
dard finite-difference scheme, using uniform mesh, with the in-
terpolating scheme. Once again, the results are plotted for three
wavelet thresholds and the two previous interpolating scaling
functions. For the two cases and , the error
on the drain current is, respectively, 50% and 5%, and there is no
major difference between the two scaling functions. This shows
that, for these given wavelet thresholds, one would choose the
linear interpolation to achieve better CPU time. In the case of

, the linear interpolation gives a relative error of
0.8% while the cubic interpolation gives an error of 0.1%. These
results help to determine how to choose the wavelet threshold.

In this study, we also examined the computational overhead
created when the SPRs are generated. On the one hand, this
scheme shows good promises with a potential reduction in the
computation time between 74% to 95%. On the other hand, the
overhead currently reduces the gain in computation time to a
range of 25% to 55% for the different thresholds presented ear-
lier. An appropriate data structure is expected to improve those
performances. It is also to be noted that more computationally
expensive ODE solvers could be used which would reduce the
share of CPU time used to deal with the SPRs. The initial size
of the mesh that defines the finest grid also affects the CPU time
performances of the scheme because the size of the system of
ODE changes.

V. CONCLUSION

A wavelet approach based on an interpolation scheme has
been used to solve the two sets of PDEs, namely, Maxwell’s
equations for EM analysis and the drift-diffusion model for
the field-effect transistor analysis. In the FET simulation, a
reduction of 83% in the number of unknowns is obtained while
keeping the – characteristics in an acceptable 3% of accu-
racy relative to a conventional finite-difference scheme. For
EM simulation, similar results can be achieved. The reduction

in CPU time is a function of the ODE solver. The overhead
created by generating the nonuniform mesh can be reduced by
an appropriate data structure and can be negligible compared
to the number of times the SPRs are used in the ODE solver.
This opens the door to an efficient numerical technique suitable
for global modeling of microwave circuits. This scheme will
be applied to more complex semiconductor models in the near
future to model the particle-wave interaction that occurs inside
high-frequency and high-speed active devices.
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